Global Journal of Engineering Science and Researches DECOMPOSTION OF THE TENSOR $\mathrm{T}_{\mathrm{ijkh}}$ IN A FINSLER SPACE
 P.K . Dwivedi ${ }^{*}$, S.C. Rastogi ${ }^{2}$, A.K. Dwivedi ${ }^{3}$ \& S.Maithani ${ }^{4}$
 ${ }^{*} 1 \& 4$ AIMT, sLUCKNOW
 ${ }^{2}$ Flat No. 105, Shagun Vatika, Lucknow
 ${ }^{3}$ CIPET, LUCKNOW

ABSTRACT
The-tensor Tijkh, was simultaneously defined and studied in an n-dimensional Finsler space by Matsumoto [3] and Kawaguchi [1], in (1972). This is one of the most important tensor in the study of Finsler spaces of n-dimensions and it has been studied by several authors namely Matsumoto and Shimada [5], Rastogi [7] and [9] and others. In this paper an attempt has been made to decompose this tensor and study some of its properties. Besides this we have also defined and studied an n-dimensional T-reducible Finsler space

I. INTRODUCTION

Let F^{n} be an n-dimensional Finsler space with metric function $L(x, y)$, metric tensor $g_{i j}(x, y)$, and angular metric tensor h_{ij} and torsion tensor $\mathrm{C}_{\mathrm{ijk}}$. The h -and v-covariant derivatives of a tensor field $\mathrm{X}_{\mathrm{j}}{ }^{\mathrm{i}}$ are defined as follows Rund [10]:
$X^{\mathrm{i}}{ }_{\mathrm{jl} / \mathrm{k}}=\delta_{\mathrm{k}} \mathrm{X}_{\mathrm{j}}^{\mathrm{m}} \mathrm{F}_{\mathrm{mk}}^{\mathrm{i}}-\mathrm{X}_{\mathrm{m}}^{\mathrm{i}} \mathrm{F}_{\mathrm{jk}}{ }_{\mathrm{j}}$
And
$X^{\mathrm{i}}{ }_{\mathrm{jlk}}=\Delta_{\mathrm{k}} \mathrm{X}_{\mathrm{j}}^{\mathrm{i}}+\mathrm{X}^{\mathrm{m}} \mathrm{j}_{\mathrm{j}}^{\mathrm{i}}{ }_{\mathrm{mk}}-\mathrm{X}_{\mathrm{m}}^{\mathrm{i}} \mathrm{C}_{\mathrm{jk},}$
Where $\delta_{k}=\gamma_{k}=N_{k}^{m} \Delta_{m}, \gamma_{k}$ and Δ_{k} respectively denote partial differentiation with respect to x^{i} and y^{i}.
The two torsion tensors $\mathrm{A}_{\mathrm{ijk}}$ and $\mathrm{P}_{\mathrm{ijk}}$ are defined as

$$
\begin{equation*}
\mathrm{A}_{\mathrm{ijk}}=\mathrm{LC}_{\mathrm{ijk}}, 2 \mathrm{C}_{\mathrm{ijk}}=\Delta_{\mathrm{k}} \mathrm{~g}_{\mathrm{ij}}, \mathrm{P}_{\mathrm{ijk}} \quad \mathrm{~A}_{\mathrm{ijk} \mathrm{k} ~}^{0}=\mathrm{A}_{\mathrm{ijkl}}{ }^{\mathrm{r}} \mathrm{I}^{\mathrm{r}}=\mathrm{y}^{\mathrm{i}} \mathrm{~L}^{-1} \tag{1.3}
\end{equation*}
$$

The second and third curvature tensors are given as
$\mathrm{P}_{\mathrm{ijkh}}=\mathrm{C}_{(\mathrm{i}, \mathrm{j})}\left\{\mathrm{A}_{\mathrm{jkh} \mathrm{Ii}}+\mathrm{A}_{\mathrm{jkr}} \mathrm{P}_{\mathrm{jh}}\right\}$
And
$\mathrm{S}_{\mathrm{ijkh}}=\mathrm{C}_{(\mathrm{k} . \mathrm{h})}\left\{\mathrm{A}_{\mathrm{ihr}} \mathrm{A}_{\mathrm{jh}}^{\mathrm{r}}\right\}$
Where $\mathrm{C}_{(\mathrm{i}, \mathrm{j})}$ mean interchange of indices I and j and subtraction.
The T-tensor is symmetric in $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{h}$ and is expressed as Matsumoto [4]:
$\mathrm{T}_{\mathrm{ijkh}}=\mathrm{L} \mathrm{C}_{\mathrm{ijk}} \|_{\mathrm{h}}+1_{\mathrm{i}} \mathrm{C}_{\mathrm{jkh}}+1_{\mathrm{j}} \mathrm{C}_{\mathrm{khi}}+\mathrm{l}_{\mathrm{k}} \mathrm{C}_{\mathrm{ijh}}+1_{\mathrm{h}} \mathrm{C}_{\mathrm{ijk}}$

II. DECOMPOSITION OF T-TENSOR IN $\mathrm{F}^{\mathrm{n} .}$ Let $\mathrm{T}_{\mathrm{ijkh}}$ be expressed as

$$
\begin{array}{r}
\mathrm{T}_{\mathrm{ijkh}}=M_{\mathrm{ijk}} B_{\mathrm{h}}+M_{\mathrm{ikh}} B_{j}+M_{\mathrm{jkh}} B_{i}+M_{\mathrm{ijh}} B_{\mathrm{k}}+\mathrm{C}_{\mathrm{ij}} C_{\mathrm{kh}}+\mathrm{C}_{\mathrm{ij}} C_{i \mathrm{ih}}+\mathrm{C}_{\mathrm{ik}} C_{j \mathrm{jh}} \tag{2.1}\\
+\mathrm{D}_{\mathrm{i}} D_{j} D_{\mathrm{k}} D_{\mathrm{h}}
\end{array}
$$

RESEARCHERID

Where the vectors B_{j} and D_{j} are non-zero and the tensors $\mathrm{M}_{\mathrm{ijk}}$ and C_{ij} are symmetric and non-zero.
If we define a tensor $\mathrm{L}_{\mathrm{ijkh}}$ by

$$
\begin{equation*}
L_{i j k h}=C_{i j} C_{k h}+C_{j k} C_{i h}+C_{i k} C_{j h}+D_{i} D_{k} D_{h} \tag{2.2}
\end{equation*}
$$

From equation (2.1) on multiplication by $1^{\text {h, }}$ we can obtain
$\mathrm{M}_{\mathrm{ijk}} \quad \mathrm{B}_{\mathrm{o}}+\mathrm{M}_{\mathrm{iko}} \mathrm{B}_{\mathrm{j}}+\mathrm{M}_{\mathrm{ijo}} \mathrm{B}_{\mathrm{k}}+\mathrm{L}_{\mathrm{ijko}}=0$.
Equation (2.3) on further multiplication by 1^{k} gives
$2 \mathrm{M}_{\mathrm{ijo}} \mathrm{B}_{\mathrm{o}}+\mathrm{M}_{\mathrm{ioo}} \mathrm{B}_{\mathrm{j}}+\mathrm{M}_{\mathrm{j} \text { ooo }} \mathrm{B}_{\mathrm{i}}+\mathrm{L}_{\mathrm{ijoo}}=0$.
Equation (2.4) on multiplication by I^{j} gives
$3 M_{i o o} B_{o}+M_{\text {ooo }} B_{i}+L_{\text {iooo }}=0$
Equation (2.5) on multiplication by 1^{i} gives

$$
\begin{equation*}
4 \mathrm{M}_{\mathrm{ioo}} \mathrm{~B}_{0}+3 \mathrm{C}^{2} 00+\mathrm{D}^{4}{ }_{0}=0 \tag{2.6}
\end{equation*}
$$

If we assume that $\mathrm{B}_{\mathrm{o}} \neq 0$, equation (2.6) implies
$M_{\text {oоо }}=-\left(4 B_{o}\right)^{-2}\left(3 C^{2} 00+D_{0}{ }^{4}\right)$
Substituting the value of M_{000} from (2.7) in (2.5), we get
$\mathrm{M}_{\mathrm{i} 00}=\left(\mathrm{B}_{0}\right)^{-2}\left[\left(3 \mathrm{C}_{00}{ }^{2}+\mathrm{D}_{0}{ }^{4}\right) \mathrm{Bi}-4 \mathrm{~B}_{0} \mathrm{~L}_{\mathrm{i} 000}\right] / 12$
Substituting the value of $\mathrm{M}_{\mathrm{i} 00}$ from (2.8) in (2.4) we get
$\mathrm{M}_{\mathrm{ij} 0}=-\left(\mathrm{B}_{0}\right)^{-3}\left[\mathrm{~B}_{\mathrm{i}} \mathrm{B}_{\mathrm{j}}\left(3 \mathrm{C}_{00}{ }^{2}+\mathrm{D}_{0}{ }^{4}\right)-2 \mathrm{~B}_{0}\left(\mathrm{~B}_{\mathrm{j}} \mathrm{L}_{\mathrm{i} 000}+\mathrm{B}_{\mathrm{i}} \mathrm{L}_{\mathrm{j} 000}\right)\right] / 12-\left(2 \mathrm{~B}_{0}\right)^{-1} \mathrm{~L}_{\mathrm{ij} 000}$
Substituting from equation (2.9) the value of $\mathrm{M}_{\mathrm{ij} 0}$ in (2.3), we get
$M_{i j k}=(1 / 4) B_{0}{ }^{-4}\left(3 C_{00}{ }^{2}+D_{0}{ }^{4}\right) B_{i} B_{j} B_{k}-(1 / 3) B_{0}^{-3}\left(B_{i} B_{j} L_{k 000}+B_{j} b_{k} L_{i 000}+B_{k} B_{i} L_{j o o o}\right)+(1 / 2) B_{0}{ }^{-2}\left(B_{i} L_{j k 00}+B_{j} L_{i j 00}-2\right.$ $\mathrm{B}_{0} \mathrm{~L}_{\mathrm{ijko}}$).

Substituting in (2.1) from (2.2) and (2.10), we get on simplification
$\mathrm{T}_{\mathrm{ijkh}}=\mathrm{L}_{\mathrm{ijkh}}-\mathrm{B}_{0}^{-1}\left(\mathrm{~B}_{\mathrm{i}} \mathrm{L}_{\mathrm{jkho}}+\mathrm{B}_{\mathrm{j}} \mathrm{L}_{\mathrm{ikh} 0}+\mathrm{B}_{\mathrm{h}} \mathrm{L}_{\mathrm{ijk} 0}\right)+\mathrm{B}_{0}^{-2}\left(\mathrm{~B}_{\mathrm{i}} \mathrm{B}_{\mathrm{j}} \mathrm{L}_{\mathrm{kh} 00}+\mathrm{B}_{\mathrm{j}} \mathrm{B}_{\mathrm{k}} \mathrm{L}_{\mathrm{hi} 00}+\mathrm{B}_{\mathrm{k}} \mathrm{B}_{\mathrm{h}} \mathrm{L}_{\mathrm{i} j 00}+\mathrm{B}_{\mathrm{h}} \mathrm{B}_{\mathrm{i}} \mathrm{L}_{\mathrm{jk} 00}+\mathrm{B}_{\mathrm{j}} \mathrm{B}_{\mathrm{k}}\right.$ $\left.L_{j h 00}+B_{j} B_{h} L_{i k 00}\right)-B_{0}{ }^{-3}\left(B_{i} B_{j} B_{k} L_{h 000}+B_{j} B_{k} B_{h} L_{i 000}+B_{k} B_{h} B_{i} L_{j 000}+B_{h} B_{i} B_{j} L_{k 000}\right)+B_{0}{ }^{-4}\left(3 C_{00}{ }^{2}+D_{0}{ }^{4}\right) B_{i} B_{j}$ $\mathrm{B}_{\mathrm{k}} \mathrm{B}_{\mathrm{h}}$. (2.11)

From equation (2.11), we can establish:
Theorem 2.1- In an n-dimensional Finsler space F^{n}, if $\mathrm{B}_{0} \neq 0$, the tensor $\mathrm{T}_{\mathrm{ijkh}}$ can be decomposed in the form of (2.11).

If in equation (2.6) we assume that $\mathrm{M}_{000}=0$ and $\mathrm{B}_{0} \neq 0$, we get $\mathrm{C}_{00}{ }^{2}+\mathrm{D}_{0}{ }^{4}=0$, which leads to:

Theorem 2.2- If $\mathrm{B}_{0} \neq 0$, the necessary and sufficient condition for vanishing for M_{000} is given by $3 \mathrm{C}_{00}{ }^{2}+\mathrm{D}_{0}{ }^{4}=0$. Substituting $\mathrm{M}_{000}=0$, in (2.3), (2.4) and (2.5) we get

$$
\begin{align*}
& M_{i 00}=D_{0}{ }^{3}\left(3 \mathrm{~B}_{0} \mathrm{C}_{00}\right)^{-1}\left(\mathrm{C}_{\mathrm{i} 0} \mathrm{D}_{0}-\mathrm{C}_{00} \mathrm{D}_{\mathrm{i}}\right) \tag{2.12}\\
& \mathrm{M}_{\mathrm{ijo}}=-\mathrm{D}_{0}{ }^{3}\left(6 \mathrm{~B}_{0}{ }^{2} \mathrm{C}_{00}\right)^{-1}\left[\mathrm{~B}_{\mathrm{i}}\left(\mathrm{C}_{\mathrm{jo}} \mathrm{D}_{0}-\mathrm{C}_{00} \mathrm{D}_{\mathrm{j}}\right)+\mathrm{B}_{\mathrm{j}}\left(\mathrm{C}_{\mathrm{i} 0} \mathrm{D}_{0}-\mathrm{C}_{00} \mathrm{D}_{\mathrm{i}}\right)\right] \\
& \quad-\left(2 \mathrm{~B}_{0}\right)^{-1}\left(\mathrm{C}_{\mathrm{ij}} \mathrm{C}_{00}+\mathrm{C}_{\mathrm{i} 0} \mathrm{C}_{\mathrm{j} 0}+\mathrm{D}_{\mathrm{i}} \mathrm{D}_{\mathrm{j}} \mathrm{D}_{0}^{2}\right)
\end{aligned} \quad \begin{aligned}
& \mathrm{M}_{\mathrm{ijk}}=-\left(\mathrm{B}_{0}\right)^{-1} \Sigma_{(\mathrm{i}, \mathrm{j}, \mathrm{k})}\left[-\mathrm{D}_{0}{ }^{3}\left(6 \mathrm{~B}_{0}{ }^{2} \mathrm{C}_{00}\right)^{-1}\left\{\mathrm{~B}_{\mathrm{i}}\left(\mathrm{C}_{\mathrm{j} 0} \mathrm{D}_{0}-\mathrm{C}_{00} \mathrm{D}_{\mathrm{j}}\right)+\mathrm{B}_{\mathrm{j}}\left(\mathrm{C}_{\mathrm{i} 0} \mathrm{D}_{0}-\mathrm{C}_{00} \mathrm{D}_{\mathrm{i}}\right)\right\}\right. \tag{2.13}\\
& \left.-\left(2 \mathrm{~B}_{0}\right)^{-1}\left(\mathrm{C}_{\mathrm{ij}} \mathrm{C}_{00}+\mathrm{C}_{\mathrm{i} 0} \mathrm{C}_{\mathrm{j} 0}+\mathrm{D}_{\mathrm{i}} \mathrm{D}_{\mathrm{j}} \mathrm{D}_{0}{ }^{2}\right)+\mathrm{C}_{\mathrm{ij}} \mathrm{C}_{\mathrm{k} 0}+(1 / 3) \mathrm{D}_{\mathrm{i}} \mathrm{D}_{\mathrm{j}} \mathrm{D}_{\mathrm{k}} \mathrm{D}_{0}\right] \quad(2.14)
\end{align*}
$$

Application of (2.12), (2.13) and (2.14) in (2.11) gives.

```
\(\mathrm{T}_{\mathrm{ijkh}}=\mathrm{L}_{\mathrm{ijkh}}-\mathrm{B}_{0}{ }^{-1}\left(\mathrm{~B}_{\mathrm{i}} \mathrm{L}_{\mathrm{jkh} 0}+\mathrm{B}_{\mathrm{j}} \mathrm{L}_{\mathrm{ikho}}+\mathrm{B}_{\mathrm{k}} \mathrm{L}_{\mathrm{ijho}}+\mathrm{B}_{\mathrm{h}} \mathrm{L}_{\mathrm{ijko}}\right)+\mathrm{B}_{0}{ }^{-2}\left(\mathrm{~B}_{\mathrm{i}} \mathrm{B}_{\mathrm{j}} \mathrm{L}_{\mathrm{kh} 00}\right.\)
\(\left.+B_{j} B_{k} L_{h i 00}+B_{k} B_{h} L_{i j 00}+B_{h} B_{i} L_{j k 00}+B_{i} B_{k} L_{j h 00}+B_{j} B_{h} L_{i k 00}\right)-B_{0}{ }^{-3}\)
\(\left(B_{i} B_{j} B_{k} L_{h 000}+B_{j} B_{k} L_{h 000}+B_{j} B_{k} B_{h} L_{i 000}+B_{k} B_{h} B_{i} L_{j 000}+B_{h} B_{i} B_{j} L_{k 000}\right)\), (2.15)
```

Where

$$
\begin{align*}
& \mathrm{L}_{000}=0, \mathrm{~L}_{\mathrm{i} 000}=3 \mathrm{C}_{00} \mathrm{D}_{0}^{-1}\left(\mathrm{C}_{\mathrm{i} 0} \mathrm{D}_{0}-\mathrm{C}_{00} \mathrm{D}_{\mathrm{i}}\right), \\
& \mathrm{L}_{\mathrm{ij00}}=\mathrm{C}_{00} \mathrm{D}_{0}^{-2}\left(\mathrm{C}_{\mathrm{ij}} \mathrm{D}_{0}^{2}-3 \mathrm{C}_{00} \mathrm{D}_{\mathrm{i}} \mathrm{D}_{\mathrm{j}}\right)+2 \mathrm{C}_{\mathrm{i} 0} \mathrm{Cj}^{2}, \\
& \mathrm{~L}_{\mathrm{ijk} k}=\mathrm{C}_{\mathrm{ij}} \mathrm{C}_{\mathrm{k} 0}+\mathrm{C}_{\mathrm{jk}} \mathrm{C}_{\mathrm{i} 0}+\mathrm{C}_{\mathrm{ik}} \mathrm{C}_{\mathrm{j} 0}-3 \mathrm{D}_{0}^{-3} \mathrm{C}_{00}{ }^{2} \mathrm{D}_{\mathrm{i}} \mathrm{D}_{\mathrm{j}} \mathrm{D}_{\mathrm{k}} \tag{2.16}
\end{align*}
$$

Hence we have:
Theorem 2.3- In an n-dimensional Finsler space F^{n}, if $\mathrm{B}_{0} \neq 0$ and $\mathrm{M}_{000}=0$, the tensor $\mathrm{T}_{\mathrm{ijkh}}$ can be expressed by (2.15).

III. T- REDUCIBLE FINSLER SPACES

We shall now consider some special cases
Case I. $\mathbf{C}_{\mathbf{i j}}=\mathbf{h}_{\mathrm{ij}}$: Equation (2.1), by virtue of (2.2) can be expressed as $T_{i j k h}=h_{i j} h_{k h}+h_{j k} h_{i h}+h_{i k} h_{j h}+D_{i} D_{j} D_{k} D_{h}$

Furthermore from equation (3.1), by virtue of $\mathrm{T}_{\mathrm{ijkh}} \mathrm{1}^{\mathrm{h}}=0$, we can obtain, $\mathrm{D}_{0}=0$. It is very well known that torsion vector C_{i} satisfies $C_{0}=0$, therefore most suitable value of the tensor T_{ijkh} can be expressed as
$T_{i j k h}=h_{i j} h_{k h}+h_{j k} h_{i h}+h_{i k} h_{j h}+C_{i} C_{j} C_{k} C_{h}$
From equation (3.2), we give following definition:
Definition 3.1- A finsler space F^{n}, whose tensor $\mathrm{T}_{\mathrm{ijkh}}$ is given by (3.2), shall be called T-reducible Finsler space.
Case II. Two-dimensional Finsler space $\mathbf{F}^{\mathbf{2}}$: Equation (3.2), can be expressed as $\mathrm{T}_{\mathrm{ijkh}}=\left(3+\mathrm{C}^{4}\right) \mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}} \mathrm{m}_{\mathrm{k}} \mathrm{m}_{\mathrm{h}}$

It is known that in a two dimensional Finsler space $\mathrm{T}_{\mathrm{ijkh}}$ is expressed as Matsumoto [4] $\mathrm{T}_{\mathrm{ijkh}}=\mathrm{L}^{-1} \mathrm{l}_{2} \mathrm{~m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}} \mathrm{m}_{\mathrm{k}} \mathrm{m}_{\mathrm{h}}$,

Therefore, comparing equations (3.3) and (3.4), we obtain
Theorem 3.1- In a two dimensional T-reducible Finsler space scalar $1,2=\mathrm{L}\left(\mathrm{C}^{4}+3\right)$.
Case III. Three dimensional Finsler space $\mathbf{F}^{\mathbf{3}}$: Equation (1.6) can be expressed as Rastogi [9]
$T_{\mathrm{ijkh}}=\mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}} \mathrm{m}_{\mathrm{k}} \dot{\alpha}_{\mathrm{h}}-\Sigma_{(\mathrm{i}, \mathrm{j}, \mathrm{k})}\left\{\mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}} \mathrm{m}_{\mathrm{k}} \mathrm{n}_{\mathrm{h}} \beta_{\mathrm{h}}=\mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}} \mathrm{y}_{\mathrm{h}}\right\}+\mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}} \delta_{\mathrm{h}}$
Where
$\dot{\alpha}_{h}=\mathrm{LC}_{(1)}\left\|_{\mathrm{h}}+\mathrm{C}_{(1)} \mathrm{l}_{\mathrm{h}}+3 \mathrm{C}_{(2)} \mathrm{v}_{\mathrm{h}}, 乃_{\mathrm{h}}=\mathrm{LC} \mathrm{C}_{(2)}\right\|_{\mathrm{h}}+\mathrm{C}_{(2)} \mathrm{l}_{\mathrm{h}}-\left(\mathrm{C}_{(1)}-2 \mathrm{C}_{(3)}\right) \mathrm{v}_{\mathrm{h}}$.
$y_{h}=L C_{(3)}\left\|_{h}+C_{(3)} l_{h}+C_{(2)} v_{h} . \delta_{h}=L C_{(2)}\right\|_{h}+C_{(2)} l_{h}$
In a three dimensional finsler space equation (3.2) can be expressed as
$\mathrm{T}_{\mathrm{ijkh}}=\left(3+\mathrm{C}^{4}\right) \mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}} \mathrm{m}_{\mathrm{k}} \mathrm{m}_{\mathrm{h}}+3 \mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}} \mathrm{n}_{\mathrm{h}}+\Sigma_{(\mathrm{i}, \mathrm{j}, \mathrm{k})}\left\{\mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}} \mathrm{n}_{\mathrm{k}} \mathrm{n}_{\mathrm{h}}+\mathrm{n}_{\mathrm{i}} \mathrm{n}_{\mathrm{j}} \mathrm{m}_{\mathrm{k}} \mathrm{m}_{\mathrm{h}}\right\}$ (3.7)
Comparing equations (3.5) and (3.6), we can obtain
$\mathrm{LC}_{(1)}\left\|_{0}=-\mathrm{C}_{(1)}, \mathrm{LC}_{(1)}\right\|_{\mathrm{h}} \mathrm{m}^{\mathrm{h}}=3\left(1-\mathrm{C}_{(2)} \mathrm{V}_{2) 32}\right)+\mathrm{C}^{4}, \mathrm{LC}_{(1)} \|_{\mathrm{h}} \mathrm{n}^{\mathrm{h}}=-3 \mathrm{C}_{(2)} \mathrm{V}_{2) 33}$,
$\mathrm{L} \mathrm{C}_{(2)}\left\|_{0}=-\mathrm{C}_{(2)}, \mathrm{L} \mathrm{C}_{(2)}\right\|_{\mathrm{h}} \mathrm{m}^{\mathrm{h}}=\left(\mathrm{C}_{\left.(1)-2 \mathrm{C}_{(3)} \mathrm{V}_{2}\right) 32}, \mathrm{LC} \mathrm{C}_{(2)} \|_{\mathrm{h}} \mathrm{n}^{\mathrm{h}}=\left(\mathrm{C}_{(1)}-2 \mathrm{C}_{(3)}\right) \mathrm{v}_{2) 33}-1\right.$
$\left.L \mathrm{C}_{(3)}\left\|_{0}=-\mathrm{C}_{(3)}, \mathrm{LC}_{(3)}\right\|_{h} \mathrm{~m}^{\mathrm{h}}=-\mathrm{C}_{(2)} \mathrm{V}_{2) 32}-1, L \mathrm{C}_{(3)} \|_{\mathrm{h}} \mathrm{n}^{\mathrm{h}}=-\mathrm{C}_{(2)} \mathrm{v}_{2}\right) 33$
Hence we have:
Theorem 3.2- In a three dimensional T-reducible Finsler space F^{3}, coefficients $\mathrm{C}_{(1)} \|_{0}$ and $\mathrm{C}_{(3)} \|_{0}$ satisfy equations (3.8).

IV. T-REDUCIBLE N-DIMENSIONAL FINSLER SPACES

Here we shall consider some special cases of n -dimensional finsler spaces
Case I. C2 - like Finsler space: It is known that a C2 - like Finsler space satisfies [6]

$$
\begin{equation*}
\mathrm{C}_{\mathrm{ijk}}=\mathrm{C}^{-2} \mathrm{C}_{\mathrm{i}} \mathrm{C}_{\mathrm{j}} \mathrm{C}_{\mathrm{k}} \tag{4.1}
\end{equation*}
$$

Therefore, from equation (1.6), we can obtain
$\mathrm{T}_{\mathrm{ijkh}}=\mathrm{L}\left\{-2 \mathrm{C}^{-3} \mathrm{Cl}_{\mathrm{h}} \mathrm{C}_{\mathrm{i}} \mathrm{C}_{\mathrm{j}} \mathrm{C}_{\mathrm{k}}+\mathrm{C}^{-2}\left(\mathrm{C}_{\mathrm{i}}\left\|_{\mathrm{h}} \mathrm{C}_{\mathrm{k}}+\mathrm{C}_{\mathrm{i}} \mathrm{C}_{\mathrm{j}} \mathrm{C}_{\mathrm{k}}\right\|_{\mathrm{h}}\right)\right\}$
$+C^{-2}\left(l_{i} C_{j} C_{k} C_{h}+l_{j} C_{k} C_{i} C_{h}+l_{k} C_{i} C_{j} C_{h}+l_{h} C_{i} C_{j} C_{k}\right)$

If C2 -like Finsler space is also T-reducible Finsler space, comparing equations (3.2) and (4.2) and multiplying the resulting equation by g^{ij}, we get

$$
(n+1) h_{k h}+C^{2} C_{k} C_{h}=L\left\{-2 C^{-1} C\left\|_{h} C_{k}+2 C^{-2} C_{i}\right\|_{h} C^{i} C_{k}+C_{k} \|_{h}\right\}+l_{k} C_{h}+l_{h} C_{k}(4.3)
$$

Which further leads to
$\mathrm{C}^{\mathrm{i}}\left(\mathrm{C}_{\mathrm{i}}\left\|_{\mathrm{h}} \mathrm{C}_{\mathrm{k}}-\mathrm{C}_{\mathrm{i}}\right\|_{\mathrm{k}} \mathrm{C}_{\mathrm{h}}\right)=\mathrm{C}\left(\mathrm{C}\left\|_{\mathrm{h}} \mathrm{C}_{\mathrm{k}}-\mathrm{C}\right\|_{\mathrm{h}} \mathrm{C}_{\mathrm{k}}-\mathrm{C} \|_{\mathrm{k}} \mathrm{C}_{\mathrm{h}}\right), \mathrm{C}^{\mathrm{i}} \mathrm{C}_{\mathrm{i}} \|_{0}=-\mathrm{L}^{-1} \mathrm{C}^{2}$ Hence we have:

Theorem 4.1- An n-dimensional C2-like T-reducible Finsler space F^{n}, satisfies (4.4)
Case II. P2-like Finsler space: It is known that for an arbitarary vector field M_{i}, the second curvature tensor of a P2 - like Finsler space satisfies [4]
$\mathrm{P}_{\mathrm{ijkh}}=\mathrm{M}_{\mathrm{i}} \mathrm{C}_{\mathrm{jkh}}-\mathrm{M}_{\mathrm{j}} \mathrm{C}_{\mathrm{ikh}}$
Which leads to $P_{j k h}=M_{0} C_{j k h}$. Using this relationship in equation (1.6), we obtain on simplification
$\mathrm{L}_{\mathrm{ijkh}} \|_{0}-\mathrm{M}_{0} \mathrm{~T}_{\mathrm{ijkh}}=\mathrm{L}\left(\mathrm{L} \mathrm{C}_{\mathrm{ijk}}\left\|_{\mathrm{h}}\right\|_{0}-\mathrm{C}_{\mathrm{ijk}} \|_{\mathrm{h}}\right)$
If P2 -like Finsler space F^{n} is also T-reducible, by virtue of equations (3.2) and (4.6), we can obtain on simplification
$\mathrm{L}\left(\mathrm{L} \mathrm{C}^{\mathrm{h}}\left\|_{\mathrm{h} 10}-\mathrm{C}^{\mathrm{h}}\right\|_{\mathrm{h}}\right)=\mathrm{C}^{3}\left(4 \mathrm{LC} \|_{0}-\mathrm{C} \mathrm{M}_{0}\right)-\left(\mathrm{n}^{2}-1\right) \mathrm{M}_{0}$
Hence we have:
Theorem 4.2- An n-dimensional P2-like T-reducible Finsler space F^{n}, satisfies (4.7).
Case III. PT2-like Finsler space: It is known that in a PT2-like Finsler space tensor $\mathrm{P}_{\mathrm{ijk}}$ satisfies Rastogi [8]:
$\mathrm{P}_{\mathrm{ijk}}=\mathrm{P}^{-2} \mathrm{P}_{\mathrm{i}} \mathrm{P}_{\mathrm{j}} \mathrm{P}_{\mathrm{k}}$
By virtue of equations (1.6), (3.2) and (4.8), we can easily obtain
$\mathrm{L}^{2} \mathrm{C}^{\mathrm{h}} \|_{\mathrm{h} \mid 0}=2 \mathrm{C}^{2}\left(\mathrm{CP} \|_{0}+\mathrm{P}^{\mathrm{h}} \mathrm{C}_{\mathrm{h}}\right)$
Hence we have:
Theorem 4.3- An n-dimensional PT2-like T-reducible Finsler space F^{n}, satisfies (4.9)
Case IV. C-Reducible Finsler space: It is known that in a C-reducible Finsler space $\mathrm{T}_{\mathrm{ijkh}}$ is given by Matsumoto [2]:
$\mathrm{T}_{\mathrm{ijkh}}=\mathrm{L}\left(\mathrm{n}^{2}-1\right)^{-1} \mathrm{C}^{\mathrm{r}} \|_{\mathrm{r}} \Sigma_{(\mathrm{I}, \mathrm{j}, \mathrm{k})}\left\{\mathrm{h}_{\mathrm{ij}} \mathrm{h}_{\mathrm{kh}}\right\}$
Therefore on comparison with equation (3.2), we can obtain
Theorem 4.4- If an n-dimensional C-reducible Finsler space F^{n}, is also T-reducible, it satisfies $L C^{r} \|_{r}=C^{4}+n^{2}-1$.
Case V. P-reducible Finsler space: It is known that in a P-reducible Finsler space Fn
$\mathrm{P}_{\mathrm{ijk}}=(\mathrm{n}+1)^{-1}\left(\mathrm{~A}_{\mathrm{i}}\left\|_{0} \mathrm{~h}_{\mathrm{jk}}+\mathrm{A}_{\mathrm{j} 10} \mathrm{~h}_{\mathrm{ki}}+\mathrm{A}_{\mathrm{k}}\right\|_{0} \mathrm{~h}_{\mathrm{ij}}\right)$
Which by virtue of equation (3.2) and
$\mathrm{T}_{\mathrm{ijkh}}\left\|_{0}=\mathrm{L}^{2} \mathrm{C}_{\mathrm{ijk}}\right\|_{\mathrm{h} \mid 0}+\mathrm{l}_{0} \mathrm{P}_{\mathrm{jkh}}+\mathrm{l}_{\mathrm{j}} \mathrm{P}_{\mathrm{kih}}+\mathrm{l}_{\mathrm{k}} \mathrm{P}_{\mathrm{ijh}}+\mathrm{l}_{\mathrm{h}} \mathrm{P}_{\mathrm{ijh}}$
On simplification leads to
$\mathrm{C}^{\mathrm{h}} \|_{\mathrm{h} 10}=4 \mathrm{C}^{2} \mathrm{~L}^{-2} \mathrm{~A}_{\mathrm{h} \mid 0} \mathrm{C}^{\mathrm{h}}$
Hence we have:

THOMSON REUTERS
[COTII 2019]
ISSN 2348-8034
Impact Factor- 5.070
Theorem 4.5- If an n-dimensional P-reducible Finsler space F^{n} is also T-reducible, it satisfies equation (4.13).
Case VI. T2-like Finsler space: It is known that in a T2- like Finsler space
$\mathrm{F}^{\mathrm{n}}(\mathrm{n}>2), \mathrm{T}_{\mathrm{ijkh}}$ is expressed as Rastogi [7]
$\mathrm{T}_{\mathrm{ijkh}}=\mathrm{A}(\mathrm{x}, \mathrm{y}) \Sigma_{(\mathrm{I}, \mathrm{j}, \mathrm{k})}\left\{\mathrm{h}_{\mathrm{ij}} \mathrm{h}_{\mathrm{kh}}\right\}$
Therefore from equations (3.2) and (4.14), we can obtain
$\mathrm{A}(\mathrm{x}, \mathrm{y})=\left(\mathrm{C}^{4}+\mathrm{n}^{2}-1\right)\left(\mathrm{n}^{2}-1\right)^{-1}$
Which leads to?

Theorem 4.6- In a T2-like Finsler space F^{n}, which is also T-reducible, the scalar $\mathrm{A}(\mathrm{x}, \mathrm{y})$ is given by equation (4.15).
Case VII. T3-like Finsler space: It is known that in a T3- like Finsler space $F^{n}(n>3), T_{i j k h}$ is expressed as Rastogi [9]
$\mathrm{T}_{\mathrm{ijkh}}=\Sigma_{(\mathrm{I}, \mathrm{j}, \mathrm{k})}\left\{\mathrm{a}_{\mathrm{hk}} \mathrm{h}_{\mathrm{ij}}+\mathrm{b}_{\mathrm{hk}} \mathrm{C}_{\mathrm{i}} \mathrm{C}_{\mathrm{j}}\right\}$
Where $a_{h k}$ and $b_{h k}$ are arbitrary second order tensors such that $a_{h o}=0$ and $b_{h o}=0$.
Comparing equations (3.2) and (4.16), we can obtain on simplification
$(\mathrm{n}+1) \mathrm{a}_{\mathrm{ok}}+\left(\mathrm{C}^{2} \delta_{\mathrm{k}}^{\mathrm{i}}+2 \mathrm{C}^{\mathrm{i}} \mathrm{C}_{\mathrm{k}}\right) \mathrm{b}_{0 \mathrm{i}}=0$
Hence we have:
Theorem 4.7- In a T3-like Finsler space F^{n}, which is also T-reducible, the tensors $\mathrm{a}_{0 \mathrm{k}}$ and b_{ok} satisfy equation (4.17).

Case VIII. $\mathbf{A}_{\mathbf{h k}}=\mathbf{P}_{\mathbf{h k}}{ }^{(\mathbf{1})}$: It is known that $\mathrm{P}_{\mathrm{hk}}{ }^{(1)}$, is given by Shimada [11]
$\mathrm{P}_{\mathrm{hk}}{ }^{(1)}=\mathrm{C}_{\mathrm{klh}}-\mathrm{C}_{\mathrm{hklj}}+\mathrm{P}_{\mathrm{kr}} \mathrm{C}_{\mathrm{jh}}{ }^{\mathrm{j}}-\mathrm{P}_{\mathrm{hk}} \mathrm{C}_{\mathrm{r}}$
Therefore from equations (3.2) and (4.18), we can obtain
$\mathrm{B}_{\mathrm{hk}} \mathrm{C}^{\mathrm{k}}=\left(3 \mathrm{C}^{2}\right)^{-1}\left[\left(\mathrm{n}+1+\mathrm{C}^{4}\right) \mathrm{C}_{\mathrm{h}}-(\mathrm{n}+1)\left\{\mathrm{C}_{\mathrm{klh}}-\mathrm{C}_{\mathrm{hklj}}+\mathrm{P}_{\mathrm{jr}} \mathrm{C}_{\mathrm{jh}}-\mathrm{P}_{\mathrm{hk}} \mathrm{C}_{\mathrm{r}}\right\} \mathrm{C}^{\mathrm{k}}\right]$
Which by virtue of
$(\mathrm{n}+1)\left(\mathrm{P}_{\mathrm{hk}}{ }^{(1)}-\mathrm{h}_{\mathrm{hk}}\right)+\mathrm{b}_{\mathrm{hk}} \mathrm{C}^{2}+2 \mathrm{~b}_{\mathrm{hi}} \mathrm{C}^{\mathrm{i}} \mathrm{C}_{\mathrm{k}}=\mathrm{C}^{2} \mathrm{C}_{\mathrm{k}} \mathrm{C}_{\mathrm{h}}$,
Leads to

$$
\begin{align*}
\mathrm{B}_{\mathrm{hk}}= & \mathrm{C}^{-2}\left[(\mathrm{n}+1)\left(\mathrm{h}_{\mathrm{hk}}-\mathrm{P}_{\mathrm{hk}}^{(1)}\right)+\left(3 \mathrm{C}^{2}\right)^{-1} \mathrm{C}_{\mathrm{k}} \mathrm{C}_{\mathrm{h}}\left(3 \mathrm{C}^{4}-2 \mathrm{C}^{2}-2(\mathrm{n}+1)+2 \mathrm{C}_{\mathrm{k}}\left\{(\mathrm{n}+1)\left(3 \mathrm{C}^{2}\right)^{-1}\right.\right.\right. \\
& \left.\left.+\left(\mathrm{C}_{\mathrm{ilh}}+\mathrm{C}_{\mathrm{hilj}}^{\mathrm{j}}-\mathrm{P}_{\mathrm{ir}} \mathrm{C}_{\mathrm{j}_{\mathrm{jh}}}+\mathrm{P}_{\mathrm{hi}}^{\mathrm{r}} \mathrm{C}_{\mathrm{r}}\right) \mathrm{C}^{\mathrm{i}}\right\}\right] \tag{4.21}
\end{align*}
$$

Hence we have:
Theorem 4.8- In a T3-like Finsler space F^{n}, which is also T-reducible and from which the tensor a_{hk} is equal to $\mathrm{P}^{(1)}{ }_{\mathrm{hk}}$, the tensor b_{hk} is given by (4.21).

THOMSON REUTERS
[COTII 2019]

REFERENCES

1. Kawaguci, H, On Finsler spaces with the vanishing second curvature tensor, Tensor, N.S., 26(1972), 250254.
2. Matusmote, M.: On C-reducible Finsler space, Tensor, N.S., 24(1972), 29-37.
3. Matsumoto, M.: V-transformations of Finsler spaces, I, Definitions, infinitesimal transformations and isometrics', J.Math. Kyoto Univ., 12(1972), 479-512.
4. Matsumoto, M.: Foundations of Finsler Geometry and special finsler space, Kaiseish, Press, Otsu, Japan, 1986.
5. Matsumoto, M and Shimada, H.: On Finsler spaces with the curvature tensor $P_{\text {hijk }}$ and $S_{\text {hijk }}$ satisfying special conditions, Rep. on Math. Physics, 12(1977), 77-87.
6. Rastogi, S.C.: and Kawasguchi, H.: A geometrical meaning of the P-reducible confection in Finsler spaces, Tensor, N.S., 51(1992), 251-256.
7. Rastogi, S.C.: T2 and TR2-like Finsler spaces, J. Nat, Acad, Math., 17(2003)m 1-8.
8. Rastogi, S.C.: On certain P-reducible Finsler spaces, Ganita56, I(2005), 55-64.
9. Rastogi, S.C.: T3-like Finsler spaces General society 2(2008) 49-65.
10. Rund, H.: The differential geometry of Finsler spaces, Springer - Verlag, 1959.
11. Shimada, H.: On the Ricci tensors of Particular Finsler spaces, J. Korean math. Soc., 14, 1 (1977), 41-63.
