

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES DECOMPOSTION OF THE TENSOR T_{ijkh} IN A FINSLER SPACE

P.K. Dwivedi^{*1}, S.C. Rastogi², A.K. Dwivedi³ & S.Maithani⁴ ^{*1&4}AIMT, sLUCKNOW

²Flat No. 105, Shagun Vatika, Lucknow ³CIPET, LUCKNOW

ABSTRACT

The-tensor Tijkh, was simultaneously defined and studied in an n-dimensional Finsler space by Matsumoto [3] and Kawaguchi [1], in (1972). This is one of the most important tensor in the study of Finsler spaces of n-dimensions and it has been studied by several authors namely Matsumoto and Shimada [5], Rastogi [7] and [9] and others. In this paper an attempt has been made to decompose this tensor and study some of its properties. Besides this we have also defined and studied an n-dimensional T-reducible Finsler space

I. **INTRODUCTION**

Let F^n be an n-dimensional Finsler space with metric function L(x, y), metric tensor $g_{ij}(x, y)$, and angular metric tensor hij and torsion tensor Cijk. The h-and v-covariant derivatives of a tensor field Xⁱj are defined as follows Rund [10]:

$$X_{jl\,k}^{i} = \delta_{k} X_{j}^{m} F_{mk}^{i} - X_{m}^{i} F_{jk}^{m}$$
(1.1)

And

$$X_{jl\,k}^{i} = \Delta_{k} X_{j}^{i} + X_{j}^{m} C_{mk}^{i} - X_{m}^{i} C_{jk}^{m}, \qquad (1.2)$$

Where $\delta_k = \delta_k = N^m_k \Delta_m$, δ_k and Δ_k respectively denote partial differentiation with respect to x^i and y^i .

The two torsion tensors A_{ijk} and P_{ijk} are defined as

$$A_{ijk} = L C_{ijk}, 2 C_{ijk} = \Delta_k g_{ij}, P_{ijk} A_{ijk|0} = A_{ijk|} r l^r = y^i L^{-1}$$
(1.3)

The second and third curvature tensors are given as $\mathbf{P}_{ijkh} = \mathbf{C}_{(i, j)} \{ \mathbf{A}_{jkh \mid i} + \mathbf{A}_{jkr} \mathbf{P}^{r}_{jh} \}$

And

 $S_{ijkh} = C_{(k,h)} \{A_{ihr} A^r_{jh}\}$

Where C_(i, j) mean interchange of indices I and j and subtraction.

The T-tensor is symmetric in i, j, k, h and is expressed as Matsumoto [4]:

$$T_{ijkh} = L C_{ijk} ||_{h} + 1_{i} C_{jkh} + 1_{j} C_{khi} + 1_{k} C_{ijh} + 1_{h} C_{ijk}$$
(1.6)

II. DECOMPOSITION OF T-TENSOR IN Fⁿ. Let T_{ijkh} be expressed as

 $T_{ijkh} = M_{ijk} B_h + M_{ikh} B_j + M_{jkh} B_i + M_{ijh} B_k + C_{ij} C_{kh} + C_{ij} C_{ih} + C_{ik} C_{jh}$ $+ D_i D_j D_k D_h$ (2.1)

(C)Global Journal Of Engineering Science And Researches

(1.4)

148

RESEARCHERID

[COTII 2019]

ISSN 2348 - 8034

Impact Factor- 5.070

Where the vectors B_j and D_j are non-zero and the tensors M_{ijk} and C_{ij} are symmetric and non-zero.

If we define a tensor L_{ijkh} by

$L_{ijkh} = C_{ij} C_{kh} + C_{jk} C_{ih} + C_{ik} C_{jh} + D_i D_k D_h$	(2.2)	
From equation (2.1) on multiplication by 1^{h} , we can obtain		
$M_{ijk} B_o + M_{iko} B_j + M_{ijo} \; B_k + L_{ijko} = 0. \label{eq:mass_state}$		(2.3)
Equation (2.3) on further multiplication by 1 ^k gives		
$2\ M_{ijo}\ B_o + M_{ioo} \ B_j + M_{jooo}\ B_i + L_{ijoo} = 0. \label{eq:barrel}$	(2.4)	
Equation (2.4) on multiplication by I ^j gives		
$3 M_{ioo} B_o + M_{ooo} B_i + L_{iooo} = 0$		(2.5)
Equation (2.5) on multiplication by 1 ⁱ gives		
$4 \ M_{ioo} \ B_o + 3 \ C^2_{00} + D^4_0 \ = 0$		(2.6)
If we assume that $B_0 \neq 0$, equation (2.6) implies		
$M_{000} = -(4B_0)^{-2} (3C_{00}^2 + D_0^4)$		(2.7)

Substituting the value of M_{000} from (2.7) in (2.5), we get

$$\mathbf{M}_{i00} = (\mathbf{B}_0)^{-2} \left[(3 \ \mathbf{C}_{00}^2 + \mathbf{D}_0^4) \ \mathbf{B}_i - 4 \ \mathbf{B}_0 \ \mathbf{L}_{i000} \right] / 12$$
(2.8)

Substituting the value of M_{i00} from (2.8) in (2.4) we get

 $M_{ij0} = - (B_0)^{-3} [B_i B_j (3 C_{00}^2 + D_0^4) - 2 B_0 (B_j L_{i000} + B_i L_{j000})]/12 - (2 B_0)^{-1} L_{ij000}$ (2.9)

Substituting from equation (2.9) the value of M_{ij0} in (2.3), we get

$$\begin{split} M_{ijk} &= (1/4) B_0^{-4} \left(3 C_{00}^2 + D_0^4 \right) B_i \ B_j \ B_k - (1/3) \ B_0^{-3} \left(B_i \ B_j \ L_{k000} + B_j \ b_k \ L_{i000} + B_k \ B_i \ L_{j000} \right) + (1/2) \ B_0^{-2} \left(B_i \ L_{jk00} + B_j \ L_{ij00} - 2 B_0 \ L_{ijk0} \right) \\ B_0 \ L_{ijk0} \right). \end{split}$$

Substituting in (2.1) from (2.2) and (2.10), we get on simplification

 $\begin{array}{ll} T_{ijkh} &= L_{ijkh} - B_0^{-1} \ (B_i \ L_{jkh0} + B_j \ \ L_{ikh0} + B_h \ \ L_{ijk0}) + B_0^{-2} \ (B_i \ B_j \ L_{kh00} + B_j \ \ B_k \ \ L_{hi00} + B_k \ B_h \ L_{ij00} + B_k \ B_h \ L_{ij00} + B_h \ B_i \ L_{jk00} + B_j \ B_k \ B_h \ L_{ij00} + B_h \ B_i \ L_{j000} + B_h \ B_i \ B_j \ L_{k000}) + B_0^{-4} \ (3 \ C_{00}^2 + D_0^4) \ B_i \ B_j \ B_k \ B_h. \end{array}$

From equation (2.11), we can establish:

Theorem 2.1- In an n-dimensional Finsler space F^n , if $B_0 \neq 0$, the tensor T_{ijkh} can be decomposed in the form of (2.11).

149

If in equation (2.6) we assume that $M_{000} = 0$ and $B_0 \neq 0$, we get $C_{00}^2 + D_0^4 = 0$, which leads to:

(C)Global Journal Of Engineering Science And Researches

ISSN 2348 - 8034

Impact Factor- 5.070

Theorem 2.2- If $B_0 \neq 0$, the necessary and sufficient condition for vanishing for M_{000} is given by $3 C_{00}^2 + D_0^4 = 0$. Substituting $M_{000} = 0$, in (2.3), (2.4) and (2.5) we get

 $\mathbf{M}_{i00} = \mathbf{D}_0^3 \left(3 \ \mathbf{B}_0 \ \mathbf{C}_{00}\right)^{-1} \left(\mathbf{C}_{i0} \ \mathbf{D}_0 - \mathbf{C}_{00} \ \mathbf{D}_i\right)$ (2.12)

$$M_{ijo} = -D_0^3 (6B_0^2 C_{00})^{-1} [B_i (C_{jo} D_0 - C_{00} D_j) + B_j (C_{i0} D_0 - C_{00} D_i)] - (2B_0)^{-1} (C_{ij} C_{00} + C_{i0} C_{j0} + D_i D_j D_0^2)$$
(2.13)

$$\begin{split} M_{ijk} &= -(B_0)^{-1} \Sigma_{(i,j,k)} [-D_0^{-3} (6B_0^{-2} C_{00})^{-1} \left\{ B_i (C_{j0} \ D_0 - C_{00} \ D_j) + B_j \left(C_{i0} \ D_0 - C_{00} \ D_i \right) \right\} \\ &- (2B_0)^{-1} \left(C_{ij} \ C_{00} + C_{i0} \ C_{j0} + D_i \ D_j \ D_0^{-2} \right) + C_{ij} \ C_{k0} + (1/3) D_i \ D_j \ D_k \ D_0] \ (2.14) \end{split}$$

Application of (2.12), (2.13) and (2.14) in (2.11) gives.

$$\begin{split} T_{ijkh} &= L_{ijkh} - B_0^{-1} \left(B_i L_{jkh0} + B_j L_{ikh0} + B_k L_{ijh0} + B_h L_{ijk0} \right) + B_0^{-2} (B_i B_j L_{kh00} \\ &+ B_j B_k L_{hi00} + B_k B_h L_{ij00} + B_h B_i L_{jk00} + B_i B_k L_{jh00} + B_j B_h L_{ik00} \right) + B_0^{-3} \\ (B_i B_j B_k L_{h000} + B_j B_k L_{h000} + B_j B_k B_h L_{i000} + B_k B_h B_i L_{j000} + B_h B_i B_j L_{k000}), (2.15) \end{split}$$

Where

$$\begin{split} &L_{000} = 0, \, L_{i000} = 3C_{00} \, D_0^{-1} \, (C_{i0} \, D_0 - C_{00} \, D_i), \\ &L_{ij00} = C_{00} \, D_0^{-2} \, (C_{ij} \, D_0^2 - 3 \, C_{00} \, D_i \, D_j) + 2 \, C_{i0} \, Cj0, \\ &L_{ijko} = C_{ij} \, C_{k0} + C_{jk} \, C_{i0} + C_{ik} \, C_{j0} - 3 \, D_0^{-3} \, C_{00}^2 \, D_i \, D_j \, D_k \end{split}$$

Hence we have:

Theorem 2.3- In an n-dimensional Finsler space F^n , if $B_0 \neq 0$ and $M_{000} = 0$, the tensor T_{ijkh} can be expressed by (2.15).

III. T- REDUCIBLE FINSLER SPACES

We shall now consider some special cases

Case I. $C_{ij} = h_{ij}$: Equation (2.1), by virtue of (2.2) can be expressed as $T_{ijkh} = h_{ij} h_{kh} + h_{jk} h_{ih} + h_{ik} h_{jh} + D_i D_j D_k D_h$ (3.1)

Furthermore from equation (3.1), by virtue of $T_{ijkh} 1^h = 0$, we can obtain, $D_0 = 0$. It is very well known that torsion vector C_i satisfies $C_0 = 0$, therefore most suitable value of the tensor T_{ijkh} can be expressed as

 $T_{ijkh} = h_{ij} h_{kh} + h_{jk} h_{ih} + h_{ik} h_{jh} + C_i C_j C_k C_h$ (3.2)

From equation (3.2), we give following definition:

Definition 3.1- A finsler space F^n , whose tensor T_{ijkh} is given by (3.2), shall be called T-reducible Finsler space.

Case II. Two-dimensional Finsler space F²: Equation (3.2), can be expressed as $T_{ijkh} = (3+C^4) m_i m_j m_k m_h$ (3.3)

It is known that in a two dimensional Finsler space T_{ijkh} is expressed as Matsumoto [4] $T_{ijkh} = L^{-1} l_{,2} m_i m_j m_k m_h$,

Therefore, comparing equations (3.3) and (3.4), we obtain

Theorem 3.1- In a two dimensional T-reducible Finsler space scalar $l_{,2} = L(C^4+3)$.

Case III. Three dimensional Finsler space F³: Equation (1.6) can be expressed as Rastogi [9] $T_{ijkh} = m_i m_j m_k \dot{\alpha}_h - \Sigma_{(i, j, k)} \{m_i m_j m_k n_h \beta_h = m_i m_j n_k y'_h \} + n_i n_j n_k \delta_h$ (3.5)

Where

$$\begin{split} \dot{\alpha}_h &= L \ C_{(1)} \|_h + C_{(1)} l_h + 3 \ C_{(2)} \ v_h, \ \beta_h = L \ C_{(2)} \|_h + C_{(2)} \ l_h - (C_{(1)} - 2 \ C_{(3)}) \ v_h. \\ \dot{y}_h &= L \ C_{(3)} \|_h + C_{(3)} \ l_h + C_{(2)} \ v_h. \ \delta_h = L \ C_{(2)} \|_h + C_{(2)} \ l_h \ \ (3.6) \end{split}$$

In a three dimensional finsler space equation (3.2) can be expressed as

 $T_{ijkh} = (3+C^4) m_i m_j m_k m_h + 3 n_i n_j n_k n_h + \Sigma_{(i, j, k)} \{m_i m_j n_k n_h + n_i n_j m_k m_h\} (3.7)$

Comparing equations (3.5) and (3.6), we can obtain

 $\begin{array}{l} L \ C_{(1)} \|_0 = \ - \ C_{(1)}, \ L \ C_{(1)} \|_h \ m^h = \ 3 \ (1 - C_{(2)} \ v_{2)32}) + C^4 \ , \ L \ C_{(1)} \|_h \ n^h = \ - \ 3 \ C_{(2)} \ v_{2)33}, \\ L \ C_{(2)} \|_0 = \ - \ C_{(2)}, \ L \ C_{(2)} \|_h \ m^h = \ (C_{(1)} \ - 2 C_{(3)} v_{2)32}, \ \ L \ C_{(2)} \|_h \ n^h = \ (\ C_{(1)} \ - 2 C_{(3)}) \ v_{2)33} - l \\ L \ C_{(3)} \|_0 = \ - \ C_{(3)}, \ L \ C_{(3)} \|_h \ m^h = \ - C_{(2)} v_{2)32} - l \ , \ L \ C \ (3) \|_h \ n^h = \ - \ C_{(2)} v_{2)33} \end{array} \tag{3.8}$

Hence we have:

Theorem 3.2- In a three dimensional T-reducible Finsler space F^3 , coefficients $C_{(1)}|_0$ and $C_{(3)}|_0$ satisfy equations (3.8).

IV. T-REDUCIBLE N-DIMENSIONAL FINSLER SPACES

Here we shall consider some special cases of n-dimensional finsler spaces

Case I. C2 – like Finsler space: It is known that a C2 – like Finsler space satisfies [6]

 $C_{ijk} = C^{-2} C_i C_j C_k$

(4.1)

Therefore, from equation (1.6), we can obtain

 $T_{ijkh} = L\{ -2 C^{-3} C \|_{h} C_{i} C_{j} C_{k} + C^{-2} (C_{i} \|_{h} C_{k} + C_{i} C_{j} C_{k} \|_{h}) \} + C^{-2} (I_{i} C_{j} C_{k} C_{h} + I_{j} C_{k} C_{i} C_{h} + I_{k} C_{i} C_{j} C_{h} + I_{h} C_{i} C_{j} C_{k})$ (4.2)

If C2 –like Finsler space is also T-reducible Finsler space, comparing equations (3.2) and (4.2) and multiplying the resulting equation by g^{ij} , we get

 $(n+1) h_{kh} + C^2 C_k C_h = L \{-2C^{-1} C \|_h C_k + 2 C^{-2} C_i \|_h C^i C_k + C_k \|_h \} + l_k C_h + l_h C_k (4.3)$

Which further leads to

 $\begin{array}{l} C^{i}\left(C_{i}\|_{h} \ C_{k} - C_{i}\|_{k} \ C_{h} \ \right) = C(C\|_{h} \ C_{k} \ - C\|_{h} \ C_{k} - C\|_{k} \ C_{h}), \ C^{i} \ C_{i}\|_{0} \ = -L^{-1} \ C^{2} \quad (4.4) \\ \mbox{Hence we have:} \end{array}$

(C)Global Journal Of Engineering Science And Researches

ISSN 2348 - 8034 Impact Factor- 5.070

Theorem 4.1- An n-dimensional C2-like T-reducible Finsler space Fⁿ, satisfies (4.4)

Case II. P2-like Finsler space: It is known that for an arbitrary vector field M_{i} , the second curvature tensor of a P2 – like Finsler space satisfies [4]

(4.5)

(4.6)

$$P_{ijkh} = M_i \; C_{jkh} - M_j \; \; C_{ikh}$$

Which leads to $P_{jkh} = M_0 C_{jkh}$. Using this relationship in equation (1.6), we obtain on simplification

$$L T_{ijkh} |\!|_0 - M_0 T_{ijkh} = L(L C_{ijk} |\!|_h |\!|_o - C_{ijk} |\!|_h)$$

If P2 –like Finsler space F^n is also T-reducible, by virtue of equations (3.2) and (4.6), we can obtain on simplification

$$L(L C^{h} \|_{h \mid 0} - C^{h} \|_{h}) = C^{3}(4L C \|_{0} - C M_{0}) - (n^{2} - 1) M_{0}$$

$$(4.7)$$

Hence we have:

Theorem 4.2- An n-dimensional P2-like T-reducible Finsler space Fⁿ, satisfies (4.7).

Case III. PT2-like Finsler space: It is known that in a PT2-like Finsler space tensor Pijk satisfies Rastogi [8]:

$$\mathbf{P}_{ijk} = \mathbf{P}^{-2} \mathbf{P}_i \mathbf{P}_j \mathbf{P}_k \tag{4.8}$$

By virtue of equations (1.6), (3.2) and (4.8), we can easily obtain

$$L^{2} C^{h} \|_{hl0} = 2 C^{2} (C P \|_{0} + P^{h} C_{h})$$
(4.9)

Hence we have:

Theorem 4.3- An n-dimensional PT2-like T-reducible Finsler space Fⁿ, satisfies (4.9)

Case IV. C-Reducible Finsler space: It is known that in a C-reducible Finsler space T_{ijkh} is given by Matsumoto [2]:

$$T_{ijkh} = L (n^2 - 1)^{-1} C^r \|_r \Sigma_{(I, j, k)} \{ h_{ij} h_{kh} \}$$
(4.10)

Therefore on comparison with equation (3.2), we can obtain

Theorem 4.4- If an n-dimensional C-reducible Finsler space F^n , is also T-reducible, it satisfies $L C^r \|_r = C^4 + n^2 - 1$.

Case V. P-reducible Finsler space: It is known that in a P-reducible Finsler space Fⁿ

$P_{ijk} = (n+1)^{-1} (A_i \ _0 h_{jk} + A_{jl0} h_{ki} + A_k \ _0 h_{ij})$	(4.11)
Which by virtue of equation (3.2) and $T_{ijkh}I_0 = L^2 C_{ijk}I_{hl0} + I_0 P_{jkh} + I_j P_{kih} + I_k P_{ijh} + I_h P_{ijh}$	(4.12)
On simplification leads to $C^{h} \ _{hl0} = 4 C^2 L^{-2} A_{hl0} C^{h}$	(4.13)

Hence we have:

(C)Global Journal Of Engineering Science And Researches

152

ISSN 2348 - 8034

Impact Factor- 5.070

Theorem 4.5- If an n-dimensional P-reducible Finsler space Fⁿ is also T-reducible, it satisfies equation (4.13).

Case VI. T2-like Finsler space: Rastogi [7]	It is known that in a T2- like Finsler space	F^n (n > 2), T_{ijkh} is expressed as
$T_{ijkh} = A(x,y) \Sigma_{(I, j, k)} \{h_{ij} h_{kh}\}$		(4.14)

Therefore from equations (3.2) and (4.14), we can obtain

$$A(x,y) = (C^4 + n^2 - 1)(n^2 - 1)^{-1}$$
(4.15)

Which leads to?

Theorem 4.6- In a T2-like Finsler space F^n , which is also T-reducible, the scalar A(x,y) is given by equation (4.15).

Case VII. T3-like Finsler space: It is known that in a T3- like Finsler space F^n (n > 3), T_{ijkh} is expressed as Rastogi [9]

$$T_{ijkh} = \sum_{(I, j, k)} \{ a_{hk} h_{ij} + b_{hk} C_i C_j \}$$
(4.16)

Where a_{hk} and b_{hk} are arbitrary second order tensors such that $a_{ho} = 0$ and $b_{ho} = 0$.

Comparing equations (3.2) and (4.16), we can obtain on simplification

$$(n+1) a_{0k} + (C^2 \delta^i_k + 2 C^i C_k) b_{0i} = 0$$
(4.17)

Hence we have:

Theorem 4.7- In a T3-like Finsler space F^n , which is also T-reducible, the tensors a_{0k} and b_{0k} satisfy equation (4.17).

Case VIII. $A_{hk} = P_{hk}^{(1)}$: It is known that $P_{hk}^{(1)}$, is given by Shimada [11]

$$P_{hk}^{(1)} = C_{klh} - C_{hklj}^{j} + P_{kr}^{j} C_{jh}^{r} - P_{hk}^{r} C_{r}$$
(4.18)

Therefore from equations (3.2) and (4.18), we can obtain

$$B_{hk} C^{k} = (3C^{2})^{-1} [(n+1+C^{4})C_{h} - (n+1)\{C_{klh} - C^{j}_{hklj} + P^{j}_{kr} C^{r}_{jh} - P^{r}_{hk} C_{r}\} C^{k}] \quad (4.19)$$

Which by virtue of $(n+1)(P_{hk}^{(1)} - h_{hk}) + b_{hk} C^2 + 2 b_{hi} C^i C_k = C^2 C_k C_h,$ (4.20)

Leads to

$$\begin{split} B_{hk} &= C^{-2}[(n+1)(h_{hk}-P_{hk}{}^{(1)}) + (3C^2)^{-1}C_kC_h(3\ C^4-2C^2-2(n+1) + 2C_k\ \{(n+1)(3C^2)^{-1} \\ &+ (C_{ilh}+C^j_{hilj}-P^j_{ir}\ C^r_{jh}+P^r_{hi}\ C_r)C^i\}] \end{split} \tag{4.21}$$

Hence we have:

Theorem 4.8- In a T3-like Finsler space F^n , which is also T-reducible and from which the tensor a_{hk} is equal to $P^{(1)}_{hk}$, the tensor b_{hk} is given by (4.21).

(C)Global Journal Of Engineering Science And Researches

REFERENCES

ISSN 2348 - 8034 Impact Factor- 5.070

- 1. Kawaguci, H, On Finsler spaces with the vanishing second curvature tensor, Tensor, N.S., 26(1972), 250-254.
- 2. Matusmote, M.: On C-reducible Finsler space, Tensor, N.S., 24(1972), 29-37.
- 3. Matsumoto, M.: V-transformations of Finsler spaces, I, Definitions, infinitesimal transformations and isometrics', J.Math. Kyoto Univ., 12(1972), 479-512.
- 4. Matsumoto, M.: Foundations of Finsler Geometry and special finsler space, Kaiseish, Press, Otsu, Japan, 1986.
- 5. Matsumoto, M and Shimada, H.: On Finsler spaces with the curvature tensor P_{hijk} and S_{hijk} satisfying special conditions, Rep. on Math. Physics, 12(1977), 77-87.
- 6. Rastogi, S.C.: and Kawasguchi, H.: A geometrical meaning of the P-reducible confection in Finsler spaces, Tensor, N.S., 51(1992), 251-256.
- 7. Rastogi, S.C.: T2 and TR2-like Finsler spaces, J. Nat, Acad, Math., 17(2003)m 1-8.
- 8. Rastogi, S.C.: On certain P-reducible Finsler spaces, Ganita56, I(2005), 55-64.
- 9. Rastogi, S.C.: T3-like Finsler spaces General society 2(2008) 49-65.
- 10. Rund, H.: The differential geometry of Finsler spaces, Springer Verlag, 1959.
- 11. Shimada, H.: On the Ricci tensors of Particular Finsler spaces, J. Korean math. Soc., 14, 1 (1977), 41-63.

